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Introduction 

Commuting - the every day trip from home to work – remains at the core of urban transportation 

problems (Horner 2004).  In the 21st century, more people are commuting to work and their 

commute times are longer (Pisarski 2002; Sultana 2002; Bram and McKay 2005).  While 

congestion can occur at any hour and on any day of the week, it is still typically the worst at peak 

hours when people commute to and from work (Redmond and Mokhtarian 2001).  Mode choice 

is an important attribute of urban commuting.  According to the 2000 census, 76% of the 

American workers drive alone to work by automobile (Pisarski 2002).  The overwhelming use of 

automobiles in this country contributes to growing urban problems including traffic congestion, 

air pollution, and energy inefficiency.  Over the years, various strategies have been proposed to 

persuade auto drivers away from their cars and these strategies include Transportation Demand 

Management (TDM) strategies, Transportation Supply Management (TSM) strategies, and most 

recently land use management strategies.  The recent interest in land use policies has again 

stimulated studies in examining how the built environment affects people’s mode choice 

decisions (Cervero 1996; Kitamura et al. 1997; Ewing and Cervero 2001). 

 The built environment refers to any attribute characterizing land use patterns and/or 

transportation infrastructure (TRB 2005).  Population and employment densities are the most 

frequently tested land use variables in studies of mode choices.  These two variables are often 

found to be negatively correlated with the probability of using automobiles (Cervero 1994; Frank 

and Pivo 1994; Zhang 2004).  Does this finding suggest that high levels of population and 

employment densities would lead to an increase in the use of alternative modes of transportation?  

High density in general is associated with lower automobile ownership and better transit service, 

which would suggest a shorter travel time for transit as compared to automobiles (Kitamura et al. 
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1997).  Crane and Crepeau (1998) argued that the impact of the built environment on travel 

behavior is mediated through cost variables.  If cost variables were excluded, the observed 

significant built environment impact may be spurious.  Handy (1996) asked “is it density or the 

variables that go along with the density [that affect the mode choice decisions]?”  The first 

objective of this study is to examine the impact of population and employment densities on mode 

choice decisions, while controlling for cost variables. 

 Variables characterizing the transportation infrastructure of the built environment 

measure how the quality and/or quantity of the transportation facilities in an area affect one’s 

mode choice decision.  Obviously one’s decision to use a transportation mode (such as subway) 

depends on the availability and accessibility of the transportation facilities.  From this 

perspective, accessibility to transportation facilities should be part of the mode choice analysis.  

The question is how the role of transportation infrastructure differs from that of the cost 

variables?  If we control for cost variables such as total travel time, which includes the access 

time to and from transportation facilities, does the accessibility to transportation facilities still 

play a role?  The second objective of this study is to answer this question.   

 In addition to contributing to discussions on how the built environment influences mode 

choice decisions, this study is different from many previous mode choice analyses by focusing 

on tours.  It is well recognized in the literature that people chain multiple trips together into tours 

(Hanson 2004).  As journey to work often involves more than one destination nowadays, people 

frequently make decisions about how and where to combine activities as part of the journey to 

work, and via what mode of transportation.  However, empirical studies on mode choices of a 

single trip still far exceed those on a tour (Miller et al. 2006).  In this study, we analyze how tour 

level characteristics affect mode choice decisions for home-based work tours.   
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The study is set in the New York Metropolitan Region.  This is an ideal place to study 

mode choice decisions because of the diversity in population demographics, the range of 

transportation alternatives offered, and the land use mixes and densities.  The population density 

at the county level ranges from 45,499 ppsm (persons per square mile) in Manhattan to only 268 

in Sussex County, New Jersey.  The region also offers the most comprehensive mass 

transportation network in the United States.  The subway and bus systems within New York City 

carry a monthly ridership of about 110 million and 70 million respectively (MTA 2006).  

Commuter rails from the suburbs in New York State carry a monthly ridership of roughly 13 

million1, in addition to the millions carried from New Jersey and Connecticut suburbs on heavy 

rail systems.  

The remainder of the paper is organized as follows.  In Section 2, we provide a review on 

the mode choice literature.  Given the large volume of literature pertaining to mode choice, the 

focus is on recent developments.  In Section 3, an empirical dataset used in this study is 

described.  We apply the Multinomial Logit Model to the sample and the model is described in 

Section 4.  We present our model results in Section 5.  Last, discussions follow in Section 6.  

 

Prior Research 

The insight that where one lives might affect his or her travel behavior is not new.  The familiar 

four-step travel demand forecasting model, which was developed in the 1950s, used population 

density and retail density as the built environment variables to forecast trip generation and trip 

distribution from and to each unit of analysis, typically called a Transportation Analysis Zone 

                                                     
1 The 13 million count only includes Long Island Rail Road and Metro North, both of which serve trips between 
nearby suburbs (e.g., Westchester County, Suffolk County, etc.) and New York City.  The number does not count 
the ridership on Amtrak, which typically serves trips with a longer distance.  
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(TAZ).  Pushkarev and Zuppan (1977) plotted the mode share for mass transit as a function of 

population and retail densities at trip origins and trip destinations; they found that both 

population and retail densities are important factors affecting the mode share of mass transit.  

Both the “new urbanist” movement in the 1980s (Kelbaugh 1989; Katz 1994) and today’s smart 

growth policies use the built environment and modifications of this environment to influence 

travel behavior.   

One important attribute of the built environment is its land use pattern (Ewing and 

Cervero 2001; TRB 2005).  As the most popular land use variables, population and job densities 

are found to be positively associated with the levels of usage for transit and non-motorized 

modes (Cervero 1994; Ewing and Cervero 2001; Frank and Pivo 1994; Zhang 2004)2.  For 

example, using the 1996 Bay Area household travel survey, Reilly and Landis (2002) found that 

higher population density is associated with higher probability of walking or taking transit.  On 

average, an increase in the average density of four persons per acre within one mile of an 

individual’s residence is associated with a 7% increase in the probability of walking or taking 

transit.  The question is whether it is the density or other covariates (e.g., travel cost, travel time) 

going along with the density that affect travel behavior (Handy 1996).  Areas that are dense in 

population often have clustered opportunities for work or non-work related activities.  Clustered 

population and/or activities are necessary conditions for a competitive transit service (Giuliano 

2004).  From this perspective, population and employment densities may be merely proxies for 

variables that represent the quality of the transit service: headways, reliability and total travel 

time.  In this study, we test the role of population and employment densities on mode choice 

decisions, while controlling for cost variables.  Two scenarios may arise.  Insignificance may be 

                                                     
2 A more thorough review on this issue can be found in several review papers, such as Handy (1996) and Ewing and 
Cervero (2001). 
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observed if the densities serve as merely proxies for cost variables.  Or, significance may be 

found if they have their own effects.   

Another important attribute of the built environment relates to the access to mass transit 

and the network that transit serves.  The inclusion of such access to service variables as part of 

the transportation networks category of the built environment is not common.  For example, 

among the 10 papers reviewed by Ewing and Cervero (2001) for transportation networks 

category, none had such a variable.  The included variables under this category often describe the 

presence and the layout of the local street networks (Kitamura et al. 1997; Boarnet and 

Sarmiento 1998).  Some studies examined the role of the quantity of the bus or rail stops within a 

certain radius of residence (Titherideg and Hall 2006; Eash 1999).  In an alternative argument, 

variables representing the access to transportation facilities can be viewed as part of the total 

travel time by mode.  In recent mode choice studies (whose focus is not necessarily to examine 

the impact of the built environment), this practice is also rare.  Instead, total travel time by mode 

is typically included as an independent variable predicting mode choice decisions, while leaving 

out the variables measuring the access time or distance to transportation facilities (Vovsha 1997; 

da Penha Sanches and de Arruda 2002; Kim and Ulfarsson 2004; Patterson et al. 2005).   

Kitamura et al. (1997)’s study included variables representing access to transportation 

facilities.  However, total travel time by mode was not included.  In their study examining the 

propensity to use a transit mode in five neighborhoods in the San Francisco Bay Area, they 

found that distance to the nearest bus stop was a statistically significant predictor of the fraction 

of car trips and distance to the nearest rail stop had a significant negative impact on the total 

number of transit trips.  In this study, we test the role of access distances to mass transit facilities 

on mode choice decisions while controlling for cost variables.  Similar to population and 
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employment densities, access distance variables may be significant if they play their own roles or 

insignificant if they are merely proxies for cost variables. 

While it is widely recognized that people chain their trips and today’s trips have become 

far more complicated than decades ago (Levinson and Kumar 1995), mode choice studies that 

analyze single trips still far exceed those analyzing tours (Miller et al. 2006).  Hanson and 

Schwab (1986) found that unless the first trip in a tour is a trip to work, the mode choice of a tour 

is determined by all trips in the tour.  The complexity of a tour is also found to have a negative 

influence on the choice of using mass transit (Henscher and Reyes 2000; Toint and Cirillo 2001).  

In their work examining the space and time determinants of mass transit use in trip chains in 

Belgium, Vande Walle and Steenberghen (2006) found that the inability to use mass transit for a 

single trip in a tour prevented the person from using mass transit entirely.  In this study, we test 

three tour complexity variables: number of stops (including home and work locations) in a tour, 

New York City (NYC) stop (it is equal to 1 if one of the stops3 is in NYC), and total number of 

NYC stops.  We expect that the number of stops in a tour is positively related to the probability 

of choosing the auto only mode.  As New York City is associated with long travel time and high 

parking cost, we expect that the probability of using the auto-only mode drops as the values of 

last two variables increase.  

Many studies that have examined the impact of the built environment on mode choice 

behavior limited built environment characteristics to residential locations, or trip origins only 

(Zhang 2004).  Because a trip is a movement in space, it is likely that all stops in a tour matter.  

Shiftan and Barlach (2002) found that characteristics at the work site have significant 

explanatory power in mode choice decisions.  Frank and Pivo (1994) analyzed the choices 

between drive alone, transit, and walking using the Puget Sound dataset in the Seattle area.  They 
                                                     
3 Includes both home and work. 
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showed that job density matters more at the destination and population density matters more at 

the origin in influencing mode choice decisions.  Ewing and Cervero (2001) commented that 

“employment densities at destinations are as important as and are possibly more important than 

population densities at origins” (p. 92).  Similar results were confirmed by Chatman (2003).  

Using the 2001 Nationwide Personal Transportation Survey, he found that employment density 

at the work place is more closely related to automobile commuting than residential density.  

Zhang (2004) found that higher population density at origin encourages the use of walking, 

biking, and mass transit for work trips but not for nonwork trips, while higher population density 

at destination mattered for both work and nonwork trips.  Higher job density at the origin is 

insignificant for both work and nonwork trips while higher job density at the destination 

promotes the use of biking, walking, and mass transit for work trips but not for nonwork trips.  In 

this study, we apply several variables in testing the hypothesis that “all stops in a tour can 

matter”, including the minimum and maximum of single-trip distances in the tour, the maximum 

population and employment densities of all stops in the tour, and the maximum of access 

distances between the nearest mass transit facility and all stops in the tour.  The inclusion of the 

maximum density suggests that any stop in a tour can play a role; a single stop in a high-density 

area (like NYC) might prevent one from using automobile entirely, even though all other stops in 

the tour can be conveniently reached by automobile.  This applies to access distance similarly.  It 

tests our assumption that accessibility from any stop in a tour may matter; a single maximum 

access distance in a tour can prevent one from using mass transportation entirely, even though all 

other stops are within reachable distance from mass transportation facilities.   

The influence of tour complexity on mode choice decisions raises a question that relates 

to the endogeneity of the two.  The question is whether tour complexity affects mode choice, or 
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vice versa, or are both simultaneously determined.  Bhat (1997) develops a joint model 

framework that simultaneously determines the work travel mode and the number of non-work 

commute stops.  In a 2000 paper, the joint model was further improved to accommodate the 

entire travel pattern after work, including the mode choice for the evening commute, the number 

of evening commute stops, and the number of stops after arriving home from work (Bhat and 

Singh 2000).  In a more recent study, Bhat and Sardesai (2006) considered the effects of 

commute and midday stop-making as well as travel time reliability on the commute mode choice.  

Ye et al. (2006) compared three possible relationships between trip chaining pattern and mode 

choice: the trip chaining pattern is determined first and then influences mode choice; mode 

choice is determined first and then affects trip chaining pattern; and both are simultaneously 

determined.  Using the 2000 Swiss Microcensus Travel Survey, They found support for the first 

structure - that the determination of trip chaining pattern precedes mode choice for both work 

and non-work tours.  In this study, we assume that the number of stops in a tour is determined 

prior to the mode choice.  

 

Empirical Dataset Description 

Study Area 

The New York Metropolitan Region comprises 28 counties in the tri-state area: New York, New 

Jersey and Connecticut.  Figure 1 shows the study area.  As of 2000, the total population in the 

tri-state area was about 21 million.  Eight million were living in New York City (NYC), which 

includes Manhattan, Brooklyn, Bronx, Staten Island, and Queens.  About 6.6 million people 

were in the New Jersey subregion, which includes 14 counties in the northern and eastern New 

Jersey.  These two subregions combined account for almost 70% of the region’s total population.  
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New York City has the highest employment in the entire region, 3.7 million workers.  

Manhattan remains the largest employment attraction point in the region; 2 million enter 

Manhattan south of 60th street every work day (Paaswell and Zupan 1999; Bram and McKay 

2005).  This is followed by 3.2 million in the New Jersey subregion.  In total, the employment of 

these two regions combined accounts for about 70% of the region’s total.  

[Figure 1 about here] 

As noted, the concentration of 2 million daily work trips in the core of Manhattan is 

sustained by high speed rail in the city and rail/commuter bus between suburbs and NYC.  

Eighty percent of the work trips ending in the core are by mass transit; outside the core the transit 

use drops to one that is more consistent with suburban regions, approximately 25% (Paaswell 

and Zupan 1999).      

   

Data Source 

In 1997/1998, the New York Metropolitan Transportation Council (NYMTC) and the North 

Jersey Transportation Planning Authority (NJTPA), the Metropolitan Planning Organizations 

(MPOs) for New York City and Northern New Jersey metropolitan areas respectively, sponsored 

the Household Interview Survey (HIS).  

A total of 14,441 households in 28 counties in New Jersey, New York, and Connecticut 

were recruited to complete travel diaries over a 24-hour period.  The dataset is comprised of data 

on 27,369 people in 11,264 households and 118,134 trips made by the people.  The data was 

checked against the 1990 Census and the 1995 National Personal Travel Survey for 

comparability for variables that existed in the relevant datasets.  The dataset was found to be 

comparable with both datasets for most variables. 
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Study Sample 

The sample for this study comprises all commuters who made a home-based work tour on the 

survey day.  We used two criteria to select the sample: 1) the starting and ending points are 

home; and 2) there is at least one work activity between the starting and ending points.  A total of 

4,762 tours were selected (Figure 1). 

Table 1 shows the frequency distribution of the number of stops that people visit in a 

home-based work tour.  Of all 4,762 home-based work tours, simple 3-stop tours (home-work-

home) make up about half.  Nineteen percent (19%) of all tours are made with one extra stop in 

addition to work and 14% of the tours include two extra stops.  These three groups make up over 

80% of all tours.   

[Table 1 about here] 

Table 2 shows mode shares of the selected home-based work tours in the New York 

Metropolitan Region.  The non-motorized mode includes walking, wheelchair, skates, and 

bicycle.  The mode for “rail” or “commuter bus” means that people used commuter rail or 

commuter bus at least once in the tour.  The mode for “bus” or “subway” means that people used 

local bus or subway at least once in the tour and no commuter rail or commuter bus was used in 

the tour.  Therefore, if a tour involves using commuter rail, subway, and walking, it is classified 

as a tour using the rail/commuter bus mode.  In another case, if a tour only involves subway and 

walking, it is classified as a tour using the bus/subway mode.  The “auto only” mode accounts 

for about 80% of all tours.  This is not surprising because about 70% of the sample in the 

1997/1998 survey lived outside of New York City, where the dominant mode of transportation is 

the automobile. 
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[Table 2 about here] 

Table 3 shows the percentage of the sample living or working in NYC by mode.  People 

using bus/subway are most likely to live and work in New York City, followed by those using 

the non-motorized mode.  The dense clustering of population and activities in New York City 

discourages the use of automobiles.  Consequently, those using auto only for all their trips are 

most likely to live and work outside of New York City.  Those who use rail or commuter bus are 

likely to live in the suburbs and use rail/commuter bus for their commute to New York City. 

[Table 3 about here] 

Distance matters in mode choice decisions.  Table 4 shows the average trip distances of 

all single trips in a tour by mode.  Understandably, the non-motorized mode is the most limited 

in distance and its average trip distance is the lowest.  The next group includes bus, auto, and 

subway.  Trips by rail or commuter bus are the longest.   

[Table 4 about here] 

Table 5 shows descriptive socio-economic characteristics of the sample.  Females use the 

non-motorized mode more and males use more auto and rail/commuter bus more; this is 

consistent with the current literature, which found that women are more willing to switch to 

nonautomobile modes (Matthies et al., 2002).  Not surprisingly, people who use the non-

motorized mode and take bus/subway are less likely to have driver licenses and own vehicles 

than those who use auto or rail/commuter bus.  Those who use the non-motorized mode and 

bus/subway are more likely to have an income level of $50,000 or lower than those using auto 

only or rail/commuter bus.  The average age of the four groups is similar, with the exception that 

the bus/subway riders are slightly younger.  The average household size is comparable across all 

four groups.  
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[Table 5 about here] 

Tour complexity is expected to affect mode choice decisions.  The inclusion of NYC 

related variables reflects the notion that being in or visiting NYC increases tour complexity to 

some extent, because trips can not be easily made by automobiles due to the high cost of driving 

and parking in NYC.  The average number of NYC stops (including the home and work stops) in 

a home-based work tour is 2.24, 0.29, 1.38, and 3.08 for modes of non-motorized, auto only, 

rail/commuter bus, and bus/subway.   

 

Built Environment Characteristics 

In this study, we are primarily interested in two sets of variables to represent the built 

environment: population and employment densities, representing characteristics of land use 

patterns, and distance to bus/subway or rail/commuter bus stops, representing access to mass 

transportation facilities.  Population and employment densities at the census tract level are 

obtained from the Census Bureau (2000) and Census Transportation Planning Package (2000).  

We used ArcGIS to calculate the distance between a stop in a tour (e.g., home, work, or other 

locations) and the nearest bus/subway or rail/commuter bus stop.   

Statistics on three set of population and employment densities are provided in Table 6: 

average population and employment densities at home, average population and employment 

densities at work, and average maximum population and employment densities associated with a 

stop in a tour.  People who use auto only have the lowest level of population and employment 

densities at all locations.  The population and employment densities for those using bus/subway 

are comparable to those using the non-motorized mode, with the exception that the employment 

density at work for those using bus/subway is substantially higher.  We also note that for people 
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using rail/commuter bus, the population and employment densities at home are similar to those 

using auto, the densities at work are comparable to those using the non-motorized mode or 

bus/subway.  In fact, the employment density at work for this group of people is the highest 

among the four groups, suggesting that these people tend to work in the core of NYC, where 

employment density is the highest.  

[Table 6 about here] 

Statistics on six access related variables are provided in Table 7: average distance 

between the nearest rail/commuter bus stop and home, average distance between the nearest 

rail/commuter bus stop and work, average maximum distance between the nearest rail/commuter 

bus stop and a stop in the tour, average distance between the nearest bus/subway stop and home, 

average distance between the nearest bus/subway stop and work, average maximum distance 

between the nearest bus/subway stop and a stop in the tour.  People taking auto face the longest 

distance to transit opportunities.  Those taking bus and subway face the shortest distance to mass 

transportation facilities from all stops in a tour.  Those taking rail or commuter bus have a shorter 

access distance from work to bus/subway than from home.   

[Table 7 about here] 

 

Research Methodology 

Multinomial Logit Model 

The variable of interest in this study is a person’s mode choice in a choice set that could at most 

include four alternatives: non-motorized mode, auto only, rail/commuter bus, or bus/subway.  

Such a variable is of a qualitative nature; a numerical value can not be meaningfully attached.  

The qualitative nature of the variable dictates the use of a discrete choice model.   
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A discrete choice model can be derived under the random utility framework.  We assume 

that the probability of selecting alternative i over alternative j is equal to the probability that the 

amount of satisfaction (or utility) obtained by choosing alternative i is greater than that by 

choosing alternative j (Hensher and Johnson 1981).  Mathematically, the choice process can be 

expressed as: 

CjiUUi ji ∈∀≥= ,],Pr[)Pr( ,        (1) 

where Ui and Uj refer to the total utility or satisfaction obtained by choosing alternatives i and j 

respectively.  Manipulation of this probabilistic equation with various distributional assumptions 

leads to a range of discrete choice models.  For example, if we assume an extreme value 

distribution, the above equation will lead to: 

,,,)Pr( Cji
e

ei

j

V

V

j

i

∈∀=
∑           (2) 

where Vi and Vj refer to the systematic (non-random) utilities of alternatives i and j.  Typically, 

Vi and Vj are expressed as the weighted linear functions of generic4 variables such as travel time, 

and alternative-specific4 variables such as socio-economic variables at the household and 

individual levels and built environment related variables.  Equation (2) is the formulation of a 

multinomial logit model expressing the relationship between the probability of selecting 

alternative i and the attributes of alternatives in the choice set, denoted as C.  Compared to 

models based on other distributional assumptions (e.g., probit model is derived from the normal 

distributional assumption), the biggest advantage of the logit model is that it has a closed form 

solution.  Thus, the logit model provides a simple way to calculate and interpret the probability 

of choosing a mode.  Interested readers may refer to Ben-Akiva and Lerman (1985) for more 

                                                     
4 We will discuss generic and alternative-specific variables in the latter part of this section.  
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explanations for multinomial logit models.   

In this study, we use the multinomial logit model for home-based work tours in the New 

York Metropolitan Region.  Each unit of observation represents a tour, comprising two or more 

trip legs.  The dependent variable in the model is the mode choice for a tour, with four possible 

modes of transportation: non-motorized, auto only, rail/commuter bus, and bus/subway.  This 

suggests that there are four systematic utility functions (Vj, j = 1, 2, 3, 4) in the model, each 

associated with a particular mode.   

 The independent variables in this study can be grouped into two types.  The first type is 

generic, meaning that the variable has the same marginal utility or disutility regardless of the 

mode.  An example of this type is travel time.  A generic variable can be estimated with a single 

variable showing up in all utility functions.  The estimated coefficient on this single variable 

indicates the utility or disutility associated with a one-unit increase in the variable.  Take an 

example of travel time in minutes.  An estimate of -0.10 suggests a reduction of 0.10 utility for 

every 1 minute increase in travel time for all modes.  The second type is alternative-specific, 

which represents the differences in preferences for different modes.  Alternative-specific 

variables included in this study are those describing the tour complexity, the built environment, 

and socioeconomic characteristics of the decision makers in the study sample.  An alternative-

specific variable can not be estimated with a single variable showing up in all utility functions.  

At maximum, an alternative-specific variable can be included in (J-1) utility functions, where J is 

the total number of transportation modes considered in the analysis.  This leaves at least one 

utility function in which the value for that variable is automatically set to be zero.  In variable 

interpretation, the estimate is related to the utility function of the corresponding alternative.  

Take the “male” variable as an example.  It can be entered into at most three of the four utility 
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functions.  Let us suppose that this “male” variable is entered into the utility function only for the 

auto mode, suggesting that males have a higher or a lower propensity to use auto as compared to 

the other three non-automobile modes.  It also implies that that the values of the “male” variable 

for the other three modes (non-motorized, rail/commuter bus, and bus/subway) are automatically 

set to be zero.  A positive coefficient on this “male” variable in the auto utility function would 

indicate a higher probability of choosing auto (as compared to choosing other three modes) for 

males.   

 

Results 

A multinomial logit model described above is estimated for the selected sample using the Nlogit 

software.  The estimation results are shown in Table 85.  The goodness of fit of the model is good.  

With respect to the model with no coefficients, the estimated model represents a 78% 

improvement; with respect to the model with constants only, the estimated model represents a 

57% improvement.  For disaggregate datasets, these goodness of fit indices are beyond being just 

satisfying (Greene 2003).  

Census tract-to-census tract travel time represents travel cost by mode.  As expected, 

travel time has a negative coefficient, suggesting that the longer the travel time, the lower the 

probability of choosing a mode.  In addition to travel time, we also use trip distances in the 

model as cost variables.  Instead of examining the distance of the entire tour, we test the impact 

of the minimum and the maximum distances of all trip legs in a tour on the mode choice 

selection.  As explained earlier, the maximum and the minimum trip distances act as tour-level 

variables in the model.  In this sense, the maximum and the minimum trip distances included in 

                                                     
5 Not all variables discussed in the “Empirical Dataset Description” Section are included in the model due to the 
requirement of the logit model (discussed in the “Research Methodology” Section) or its correlation with other 
variables in the model. 
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the model not only capture part of the cost effect, but also part of the tour characteristics.  The 

results suggest that the minimum trip distance in a tour plays an important role.  The longer the 

minimum trip distance in a tour is, the less likely it is for a person to use the non-motorized mode 

as compared to other modes6.  The impact of this variable on auto only and rail/commuter bus 

modes is slightly larger than that on the bus or subway mode, suggesting that an increase in one 

unit of the minimum trip distance in a tour will increase the probability of choosing the auto or 

commuter rail/commuter bus mode more than that of the bus/subway mode.   

We tested the impact of tour complexity on mode choices for home-based work tours.  

The number of stops is not significant for the non-motorized, the commuter rail/commuter bus 

mode, but is significantly positive for the auto only mode.  The significance on the auto only 

mode is within our expectation and consistent with existing studies (Henscher and Reyes, 2000; 

Toint and Cirillo, 2001).  If the home-based work tour includes one or more New York City 

stops (which is associated with high population and employment densities), the choice of using 

auto drops significantly.  This is reflected in the coefficients estimated for a New York City 

related variable: the dummy variable “NYC stop”.  If one of the stops is in NYC, it decreases the 

probability of taking auto.  More simply put, the costs of driving in a very dense network are too 

high; compromises are made on the number of added trips in a chain7. 

The model incorporates two types of variables for measuring population and employment 

densities.  One is population and employment density at home and the other is the maximum 

population and employment densities associated with a stop in the tour.  This maximum 

                                                     
6 The significant and positive coefficients for auto only, rail/commuter bus, and bus/subway modes suggest that long 
minimum trip distance will lead to a higher probability of choosing these three modes.  Equivalently, this implies 
that longer minimum trip distance will result in a lower probability of choosing the non-motorized mode.  
7 One factor not noted in this paper is the attractiveness of employment in the core of Manhattan.  The median 
income of workers in the core is 50% higher than all workers in the region.  The rewards of work often overcome 
the costs of getting there. 
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population or employment density could be at home, at work, or at any other intermediate stop in 

the tour.  Not all these variables are significant.  Population density at home is significant at the 

5% level only for the rail/commuter bus mode.  Its negative coefficient suggests that higher level 

of population density at home will result in a lower probability of choosing rail/commuter bus.  

This reflects the fact that many people taking rail/commuter bus to work are those who live in 

the suburbs and work in the city.  Employment density at home is significant at the 5% level only 

for the non-motorized mode.  Its positive value suggests that higher employment density at home 

will encourage the use of the non-motorized mode.  This finding is consistent with our 

observation that a substantial share of non-motorized users lives in New York City (Table 3), 

where the employment density is high.  The maximum population density is significant for the 

auto only mode and the rail/commuter bus mode at the 5% level.  In both cases, the coefficients 

are negative, suggesting that in comparison to the non-motorized and bus/subway modes, an 

increase in the maximum population density in a tour would decrease the use of auto only and 

rail or commuter bus.  The magnitude of the coefficient for the auto only mode is smaller than 

that of rail/commuter bus mode, suggesting the effect on the auto only mode is less than that on 

the rail/commuter bus mode.  The maximum employment density is significant and positive for 

the non-motorized mode and is significant and negative for the auto only mode, suggesting that 

higher level of the maximum employment density in a tour encourages the use of the non-

motorized mode, but discourages the use of the auto only mode.  This finding is reasonable.   

In general, the findings on population and employment densities agree with the literature 

that relates population and employment densities positively with the probability of using the non-

motorized mode or transit (Cervero 1994; Ewing and Cervero 2001).  They also confirm our 

expectation that all stops in a tour matter; this is shown by a set of minimum and maximum 
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related variables.  The word “stops” here goes beyond home and work places, as others have 

shown (Zhang 2004; Shiftan and Barlach 2002).  Furthermore, our results suggest that 

population and employment densities have varying impacts at different stops (densities at home 

vs. the maximum value associated with a stop in a tour) for different modes, as shown by the 

differences in the significance and magnitude of the same variables used for different modes and 

at different stops in the tour.   

Four access variables were examined in the model.  They are: distance between the 

nearest rail/commuter bus stop and home, maximum of the distances between the nearest 

rail/commuter bus stop and all stops in a tour, distance between the nearest bus/subway stop and 

home, and maximum of the distances between the nearest bus/subway stop and all stops in a tour.  

Among the four, the two access variables associated with rail or commuter bus are significant 

and negative at the 5% level, suggesting a negative relationship between access distance and the 

probability of using rail/commuter bus.  This is consistent with Kitamura et al. (1997)’s study 

which found a negative relationship between the distance to the nearest rail stop and the total 

number of transit trips.  In theory, a higher propensity to use transit is associated with more 

transit trips.  The significance on the maximum distance variable again confirms that all stops 

matter.   

 In terms of the impact of socio-economic characteristics, four variables are significant at 

the 5% level.  All are within expectations.  Compared with females, males are more inclined to 

take the auto only mode.  The more vehicles are available to a person, the more likely he/she will 

take the auto only mode.  More children under 12 years old increase the probability of choosing 

the auto only mode.  This is probably because auto provides a convenient way to organize trips 

when there are small children around.  Holding a driver license decreases the likelihood of using 
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the non-motorized mode.   

[Table 8 about here] 

 

Discussions 

There are two main results of this study.  First, the built environment has an impact on people’s 

mode choice decisions.  Even after controlling cost variables such as travel time and trip 

distances, population and employment densities still have explanatory power on mode choices.  

This is also true for variables measuring the access distance between the nearest mass 

transportation facility and a stop in the tour.  Second, tour characteristics do affect mode choices.  

Tour characteristics not only include the three variables describing the tour complexity, but also 

those related to the minimum and maximum distances for a trip leg in a tour, the maximum 

population and employment densities, and the maximums of access distances between the 

nearest rail/commuter bus or bus/subway stop and all stops in a tour. 

 The current study confirms the importance of modeling mode choice decisions as tours 

instead of single trips.  Furthermore, the current study adds to the literature by going beyond 

home and work locations.  By utilizing the minimums and the maximums in a tour for several 

variables (e.g., population and employment densities, trip distances, and access distances to mass 

transportation facilities), our study demonstrates that any stop (home, work, or any other 

intermediate stops) in a tour can have a significant effect on mode choice decisions.  

 This study contributes to the literature with its evaluation of the role of population and 

employment densities in mode choice decisions while controlling for cost variables such as 

travel time and trip distances, as Crane and Crepeau (1998) suggested.  The results suggest that 

although it is likely that the built environment variables exert their influence through cost 
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variables 8 , these cost variables as an intermediate force do not entirely capture the built 

environment effect on mode choices.  In other words, the built environment variables are likely 

to have their own and direct effects on mode choice decisions.  Our answer to Handy (1996)’s 

question “is it density or the variables that go along with density [that affect mode choice 

decisions]?” is as follows.  Clearly, the variables that go along density are important factors in 

mode choice decisions.  In addition, the current study suggests that densities themselves are also 

likely to play a role.  One possible effect may be psychological.  People who are not familiar 

with driving in a dense area might perceive auto driving as unpleasant and stressful and thus 

avoid commuting by car.  Given that our study does not include all possible built environment 

variables, this conclusion is yet to be verified by other investigators.  

Similarly, the significance we found in variables measuring the distances between the 

nearest mass transportation facility and a stop in the tour points out the importance of including 

these access distance related variables as part of the built environment characteristics, in addition 

to population and employment densities.  

 The study uses a cross-sectional dataset from the New York Metropolitan Region.  It lays 

out associations between mode choice decisions and the built environment, while controlling for 

cost variables.  What is not answered in this study is the causality between the built environment 

and mode choices.  Because people self-select into different neighborhoods (NYC vs. suburbs 

and short access distance vs. long access distance), we can not conclude that it is the built 

environment that causes the differences in mode choices for home-based work tours.  A similar 

                                                     
8 Density can be related to travel time by mode.  Mass transit is often more competitive in a dense area, as compared 
to auto driving.  This competitiveness may contribute to the observation of a higher market share of mass transit in a 
dense area.  Density can also be related to trip distances.  Because of the clustering of activities in a dense area, trips 
made by people living in a dense area may be shorter than those made by people living in an area with scattered 
developments.  Automobiles are not competitive in short-distanced trips.  Alternative modes other than auto, on the 
other hand, are.  This may also contribute to the higher level of market share of alternative modes observed in a 
dense area.  
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but probably a less significant self-selection bias applies to work sites as well.  Because people 

also choose to accept or reject a job offer, we are in no position to conclude that work site related 

characteristics can cause differences in mode choices.  The best way to answer the causality 

question is via a panel dataset using a structural equation systems method (Cao et al. 2006).  The 

cross-sectional nature of the current dataset in the New York Metropolitan Region does not allow 

us to perform such an analysis.  However, it is certainly worthy of future pursuit, as datasets 

become available.   
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Table 1 Frequency of Number of Stops1 in a Home-based Work Tour 

Number of Stops Number of People Percent 

3 2,489 52% 

4 895 19% 

5 695 14% 

6 318 7% 

7 169 3% 

8 98 2% 

9 48 1% 

10 28 1% 

11 22 1% 

Total 4,762 100% 

1 The number of stops includes the starting and ending home position.  
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Table 2 Tour Mode Shares 

Mode N Share 

Non-motorized (walk, wheelchair, skates and bicycle) 127 0.03 

Auto only 3838 0.80 

Rail/commuter bus 350 0.07 

Bus/subway, no rail/commuter bus 447 0.09 
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Table 3 Shares of People Residing and/or Working in NYC by Mode 

 Modes of the Tour 

Variables Non-

motorized

Auto Only Rail/commuter 

bus 

Bus/Subway 

Number of observations 127 3,838 350 447 

Residing in NYC 56% 12% 18% 80% 

Working in NYC 57% 14% 83% 90% 
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Table 4 Average Distances1 of All Trips by Mode for the Sample 

Mode Mean (miles) Std. Dev. (miles) # of Trips 

Non-motorized 1.36 4.31 1553 

Auto only 8.24 10.70 14670 

Commuter rail 25.64 14.47 347 

Local bus 6.07 6.96 363 

Commuter Bus 16.21 10.70 265 

Subway 10.09 10.94 935 

1 Distance measured in straight line miles. 
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 Table 5 Descriptive Socio-Economic Statistics of the Study Sample 

 Modes of the Tour 

Variables Non-

motorized

Auto only Rail/commuter 

bus 

Bus/subway 

N 127 3838 350 447 

Gender     

Male  46% 54% 63% 52% 

Female 54% 46% 37% 48% 

License     

Yes 86% 100% 95% 82% 

No 14% 0% 5% 18% 

Income Levels     

<50,000 42% 29% 19% 39% 

>=50,000 58% 71% 81% 61% 

Mean Values     

Age 40 42 40 39 

Household size 2.7 2.9 2.7 2.8 

# of vehicles 1.5 2.3 1.9 1.4 
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Table 6 Population and Employment Densities of the Sample (persons per square miles) 

 Modes of the Tour 

Variables Non-

motorized 

Auto Only Rail/commuter bus Bus/ Subway 

Avg. population density at home 55,222 9,932 10,383 60,520 

Avg. employment density at home 38,238 3,594 4,726 23,849 

Avg. population density at work 42,096 11,453 30,402 39,680 

Avg. employment density at work 144,189 21,485 424,226 297,652 

Avg. max. population density 62,436 15,444 35,739 74,890 

Avg. max. employment density 145,328 22,367 431,649 334,140 
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Table 7 Transportation Access Characteristics of the Sample (in feet) 

 Modes of the Tour 

Variables Non-

motorized 

Auto 

Only 

Rail/commuter 

bus 

Bus/ 

Subway 

Number of observations 127 3,838 350 447 

Avg. distance between home and the 

nearest bus/subway stop 

3,126 16,858 4,810 954 

Avg. distance between home and the 

nearest rail/commuter bus stop 

3,798 11,211 5,047 2,553 

Avg. distance between work and the 

nearest bus/subway stop 

2,941 11,025 711 348 

Avg. distance between work and the 

nearest rail/commuter bus stop 

3,585 7,463 984 1,226 

Avg. Max. dist. between a stop and 

the nearest bus/subway stop 

3,396 19,816 5,295 1,101 

Avg. Max. dist. between a stop and 

the nearest rail/commuter bus stop 

4,484 13,906 5,527 3,199 
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Table 8 Model Estimation Results 

(*: variables significant at the 5% level) 

 Non-motorized Auto only Rail/commuter bus Bus/subway 

Variables Coefficient Coefficient Coefficient Coefficient 

Constant  6.5110* 1.3887 -5.4177* 

Cost variables 

Travel time -0.0034* 

Maximum distance for a single trip leg  -0.0222 0.0107 -0.0493 

Minimum distance for a single trip leg  0.4111* 0.4219* 0.3882* 

Tour complexity variables 

# of stops in a tour -0.0559 0.14590* -0.0651  

NYC stop (=1 if one of the stops is in NYC) -0.9092 -0.7090*   

# of NYC stops 0.0911    

A cell with a blank space means that the variable did not enter into the utility function for the corresponding mode for model estimation.  There may be two 
possible reasons for the blank space.  First, in a multinomial logit model, an alternative-specific variable can only be entered into, at maximum, (J-1) number 
of utility functions, where J is the number of transportation modes considered in the analysis (in this case, J = 4).  Second, a variable is not included into the 
utility equation if it is found to be strongly correlated with other variables already included into the equation and these other variables are more significant.  
An example of this variable is the maximum employment density for rail/commuter bus, which is found to be strongly correlated with the employment 
density at home for the same mode.  
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Table 8 Model Estimation Results (cont’d) 
(*: variables significant at the 5% level) 

 
 Non-motorized Auto only Rail/commuter bus Bus/subway 

Built environment variables 

Log of Population density at home -0.3314 -0.1862 -0.3273*  

Log of Employment density at home 0.3768* 0.0269 -0.1249  

Log of Max. population density -0.0529 -0.2922* -0.3349*  

Log of Max. employment density 0.3571* -0.7786*   

Distance to the nearest rail/commuter bus or bus/subway 

stop from home 

  -0.1934E-03* 0.4667E-04 

Max. of the distances to the nearest rail/commuter bus or 

bus/subway stop from all stops in a tour 

  -0.2254E-04* -0.2318E-04 

Highway density in home census tract  -51.0803   
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Table 8 Model Estimation Results (cont’d) 

(*: variables significant at the 5% level) 

 

 Non-motorized Auto only Rail/commuter bus Bus/subway 

Socio-economic variables 

Male  0.4063*   

Number of vehicles per person  1.1313*   

# of kids under 12 years old -0.1252 0.4302*   

License holder -1.0137*    

Goodness of Fit Statistics 

Log-likelihood (model) -966 

Log-likelihood (no coefficient) -4,364 

Log-likelihood (constants only) -2,235 

Adjusted ρ with respect to the no-coefficient model 0.78 

Adjusted ρ with respect to the constants-only model 0.57 
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Figure Caption 

Figure 1 Study area and home locations of the study sample. 

 


